3.211 \(\int \frac{\sqrt{-1+x^2}}{\sqrt{-1+x^4}} \, dx\)

Optimal. Leaf size=30 \[ \frac{\sqrt{x^2-1} \sqrt{x^2+1} \sinh ^{-1}(x)}{\sqrt{x^4-1}} \]

[Out]

(Sqrt[-1 + x^2]*Sqrt[1 + x^2]*ArcSinh[x])/Sqrt[-1 + x^4]

________________________________________________________________________________________

Rubi [A]  time = 0.0100729, antiderivative size = 30, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.105, Rules used = {1152, 215} \[ \frac{\sqrt{x^2-1} \sqrt{x^2+1} \sinh ^{-1}(x)}{\sqrt{x^4-1}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[-1 + x^2]/Sqrt[-1 + x^4],x]

[Out]

(Sqrt[-1 + x^2]*Sqrt[1 + x^2]*ArcSinh[x])/Sqrt[-1 + x^4]

Rule 1152

Int[((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (c_.)*(x_)^4)^(p_), x_Symbol] :> Dist[(a + c*x^4)^FracPart[p]/((d + e*x
^2)^FracPart[p]*(a/d + (c*x^2)/e)^FracPart[p]), Int[(d + e*x^2)^(p + q)*(a/d + (c*x^2)/e)^p, x], x] /; FreeQ[{
a, c, d, e, p, q}, x] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p]

Rule 215

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[(Rt[b, 2]*x)/Sqrt[a]]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rubi steps

\begin{align*} \int \frac{\sqrt{-1+x^2}}{\sqrt{-1+x^4}} \, dx &=\frac{\left (\sqrt{-1+x^2} \sqrt{1+x^2}\right ) \int \frac{1}{\sqrt{1+x^2}} \, dx}{\sqrt{-1+x^4}}\\ &=\frac{\sqrt{-1+x^2} \sqrt{1+x^2} \sinh ^{-1}(x)}{\sqrt{-1+x^4}}\\ \end{align*}

Mathematica [A]  time = 0.0226663, size = 38, normalized size = 1.27 \[ \log \left (x^3+\sqrt{x^2-1} \sqrt{x^4-1}-x\right )-\log \left (1-x^2\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[-1 + x^2]/Sqrt[-1 + x^4],x]

[Out]

-Log[1 - x^2] + Log[-x + x^3 + Sqrt[-1 + x^2]*Sqrt[-1 + x^4]]

________________________________________________________________________________________

Maple [A]  time = 0.01, size = 25, normalized size = 0.8 \begin{align*}{{\it Arcsinh} \left ( x \right ) \sqrt{{x}^{4}-1}{\frac{1}{\sqrt{{x}^{2}-1}}}{\frac{1}{\sqrt{{x}^{2}+1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^2-1)^(1/2)/(x^4-1)^(1/2),x)

[Out]

1/(x^2-1)^(1/2)*(x^4-1)^(1/2)/(x^2+1)^(1/2)*arcsinh(x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{x^{2} - 1}}{\sqrt{x^{4} - 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2-1)^(1/2)/(x^4-1)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(x^2 - 1)/sqrt(x^4 - 1), x)

________________________________________________________________________________________

Fricas [B]  time = 2.21912, size = 165, normalized size = 5.5 \begin{align*} \frac{1}{2} \, \log \left (\frac{x^{3} + \sqrt{x^{4} - 1} \sqrt{x^{2} - 1} - x}{x^{3} - x}\right ) - \frac{1}{2} \, \log \left (-\frac{x^{3} - \sqrt{x^{4} - 1} \sqrt{x^{2} - 1} - x}{x^{3} - x}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2-1)^(1/2)/(x^4-1)^(1/2),x, algorithm="fricas")

[Out]

1/2*log((x^3 + sqrt(x^4 - 1)*sqrt(x^2 - 1) - x)/(x^3 - x)) - 1/2*log(-(x^3 - sqrt(x^4 - 1)*sqrt(x^2 - 1) - x)/
(x^3 - x))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\left (x - 1\right ) \left (x + 1\right )}}{\sqrt{\left (x - 1\right ) \left (x + 1\right ) \left (x^{2} + 1\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x**2-1)**(1/2)/(x**4-1)**(1/2),x)

[Out]

Integral(sqrt((x - 1)*(x + 1))/sqrt((x - 1)*(x + 1)*(x**2 + 1)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{x^{2} - 1}}{\sqrt{x^{4} - 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2-1)^(1/2)/(x^4-1)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(x^2 - 1)/sqrt(x^4 - 1), x)